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ABSTRACT

This analysis yields an approximate solution for the isotropic
leading term of the spherical harmonic expansion of the Boltzmann
equation in the case of a slightly ionized, spatially uniform gas with
time varying electric field, and in which inelastic collisions occur. The
solution is considered valid for the characteristic frequency of the
electric field, defined here as ω = (3/2)(d/dt)ln[|E(t)| + kT/eλ], less than
the electron-molecule elastic collision frequency νm. There are no
other limiting assumptions made about gas mixture composition,
cross-section shapes, or electric field time behavior. This solution is
mathematically well behaved for any ratio ω/νm. Example
distribution functions for both ramp and sinusoidal electric fields are
presented for an idealized N2-like gas.
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Introduction

The desire for improved control over electric discharge
phenomena in a wide variety of scientific, technological,
manufacturing, and waste processing activities spurs the
development of non-equilibrium, non-uniform and time dependent
models. This paper addresses the situation of a slightly ionized,
spatially uniform gas with a time varying electric field, and in which
inelastic collisions occur. The purpose here is to present a reasonably
consistent, and reasonably accessible analytical result for the
electron kinetics in a gas discharge regime of technological interest.

This paper will be structured as follows. First, the analytical
result for the time dependent electron distribution function is stated.
Second, a summary of the solution procedure with its attendant
assumptions is given. Lastly, examples of the solution are given for
an idealized nitrogen-like gas where the electric field ramps between
static conditions, and then for sinusoidal behavior.

Analytical Result

The time dependent distribution function of electron energies
is denoted as f(ε,t), where electron kinetic energy ε is expressed in
units of eV, and where the distribution function is normalized as:

∫ f(ε,t) √ε dε = 1, (1).

The function B(ε,t) is defined as:

B(ε,t) = -(∂/∂ε) ln[f(ε,t)], (2),

and the distribution function is then given by:
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The logarithmic slope B(ε,t) is given by:
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The terms used in function B(ε,t) are as follows:

b(ε,t) = [E/N]2/(3 ε Qm
2), (5),

ω(t) = 3/2 * 1/[E/N] * (d/dt) [E/N], (6),

νm(ε) = N * Qm * √2eε/m, (7),

Qm(ε) = electron-molecule momentum transfer cross section,
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Qi(ε) = electron-molecule inelastic cross section (cm2), (8),

µ = 2m/M,
m = electron mass,
M = molecule mass, (9),

kT/e = gas temperature in eV, (10),

E(t) = time dependent electric field (V/cm) in the form:

E(t) = | E(t) |  +  kT/e * Qm(kT/e) * N,

E(t) = any imposed field variation over time, (11),

N = gas mixture number density (cm-3), a constant, (12).

For a gas mixture:

    δs = fractional concentration of species s,
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i = inelastic processes with transition indices:
i = index of initial energy level,
j = index of final energy level,



6

s

s i
δ

i

= 1

,

=M

s

s

M

s
δ

, (13).

Analytical Procedure

This analysis begins with a two term expansion of the electron
velocity distribution function in a Boltzmann equation with three
collisional effects: recoil and thermal agitation during elastic
electron-molecule encounters, and inelastic collisions.1 The leading
term in the expansion describes the bulk heating of the electrons by
the electric field in an environment dominated by collisions, while
the first order term describes the net drift of this electronic swarm
along the field and represents the macroscopic current.

The recoil and thermal agitation collision terms transmit a
small fraction of an electron's energy to a molecule, this fraction
being given by the ratio of the electron to molecule masses. The
inelastic term involves the transfer of sufficient energy to initiate
rotational, vibrational, electronic, dissociation, and ionization
phenomena. Analytical work on time dependent inelastic electron
kinetics goes back at least half a century.2,3,4,5

The spatially uniform zeroth and first order velocity
distribution equations are transformed to a dependence on electron
kinetic energy in units of eV. During this change of parameters the
relative velocity between electrons and molecules is ascribed
entirely to electron speed. Specifically:

ε = mv2/2e,

f0(ε,t) = [4π√2/(m/e)3/2] * f0(v,t), (14).

The two equations are combined into a single one for f0, hence
that subscript is eventually dropped. This equation is divided by N
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and integrated over energy from 0 to ε. An inelastic cross section is
zero below a threshold energy which is at least as large as the energy
extracted from the electron during the encounter. For example the
cross section for excitation from the 0 to 1 vibrational level in N2 is
zero below about 1.4 eV, while the energy transferred is about 0.3
eV. This fact about the cross sections proves useful in the
manipulation of the inelastic collision integrals. The resulting
equation is:
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(15).

The relationship between f0 and f1 is:
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The essence of the solution procedure employed here is to
make the exponential transform from f(ε,t) to B(ε,t), and then to argue
as in the WKB method that the equation for B(ε,t) has a stationary
solution.6 B is like a local inverse electron temperature and its rate of
change is assumed to be slower than the elastic collision frequency,
specifically:

∂Bε
0

2 ν
m

∂t
, (17).

The resulting equation for B includes the effect of the temporal
variation of the normalization integral of the distribution function,
which is how the temporal variation of the electric field exerts its
influence.

The mechanics of deriving the equation for B(ε,t) involve:
substituting equation (3) into equations (15) and (16) in place of f0,
and then dividing equation (15) by f0 as defined by equation (3). A
convenient label for the normalization integral is C(t). The result from
equation (15) is:
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The analysis of this equation now proceeds by a sequence of
approximations. The basic assumptions are:
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i)   B is a weak function of ε,
ii)  B is invariant during a collision time,
iii) C(t) can be approximated as:
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,
(19).

The approximation used for C(t) is based an energy averaged B(ε)
found in an earlier analysis of equation (18) in steady state and for
m/M taken as zero.7 Assumptions (19) lead to a sequence of
manipulations:

a) ∫ B dε  is approximated as  (B*ε),
b) the term in equation (18) which contains time derivatives is

expressed as two integrals in the form of incomplete gamma
functions, and each in turn is approximated by a two point trapezoid
rule,

c) the time integral term of equation (18) is simplified to:

B * ∫ e−νm*(t-τ) dτ,
as suggested by the condition expressed as equation (17), also the
limit of this integral at t = 0 identically cancels the f1 term in
equation (18),

d) from (19):
∂ln[C(t)]/∂t = (3/2) ∂ln[E(t)/N]/∂t,

e) the inelastic collision integrals in equation (18) are
approximated by ε * Qi/B(ε,t), as was done in an earlier analysis.7

The resulting equation for B(ε,t) is:
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This is rearranged to:
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Equation (4) results from applying condition (17) to equation (21).
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Limiting cases of B(ε,t) are:

a) ω → +∞,  B → +∞, (infinitely steep f),

b) ω → −∞,  B → 0, (flat f),

c) ω = 0, DC: (table below)
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Examples in a Model Gas

Examples are shown for a model gas with molecular weight Z =
29 (like air), a constant Qm = 10-15 cm2, at temperature T = 300° K,
and at number density N = 3.54 * 1016 cm-3 (1 Torr). An inelastic
cross section similar to vibrational excitation in N2 and with a peak of
Qi(1.7) = 3 * 1016 cm2 was chosen and is shown below.

i

Q

16-

103

0

ε0 4

Figure 1: Model Inelastic Cross Section

The first three examples are for an E/N ramps up to 100
Townsends (1 Td = 10-17 Volts-cm2), particulars are noted by each
figure (Figures 2 through 5).

The second three examples are for field collapse from an
initially steady 100 Td (Figures 6 through 12).
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Figure 2: 100 Td, 20 µs ramp
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ω/ν  <  .09

f(ε,t)

Figure 3: 100 Td, 2 µs ramp
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ω/ν < 0.9

Figure 4: 100 Td, .2 µs ramp
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Figure 5: ω/νm for example of Figure 3
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f(ε,t)

ε

t

(ε,t) = (4 eV, 25 µs)

f

Figure 6: Field Collapse from 100 Td in 20 µs

Log[f(ε,t)]

Figure 7: Log representation of Figure 6
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f(ε,t)

Figure 8: Field Collapse from 100 Td in 2 µs
(ε,t) from (0,0) to (4 eV, 2.5 µs),

Log[f(ε,t)]

Figure 9: Log representation of Figure 8
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f(ε,t)

Figure 10:  Field Collapse from 100 Td in 0.2 µs
  (ε,t) from (0,0) to (4 eV, 0.25 µs)

Log[f(ε,t)]

Figure 11:  Log representation of Figure 10
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0
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m
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Figure 12:  ω/νm for example of Figure 10

The last two examples are for E/N a sine wave with phase
angle φ after t = 0. E/N prior to t = 0 is steady at 100 * sin(φ) Td.
These examples have φ = π/4. Figures 13 through 18 show these
cases.
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f(ε,t)

Figure 13:  100 Td, 50 kHz sine wave to (ε,t) = (4 eV, 25 µs)

Log[f(ε,t)]

Figure 14:  Log representation of Figure 13
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f(ε,t)

Figure 15:  100 Td, 500 kHz sine to (ε,t) = (4 eV, 2.5 µs)

Log[f(ε,t)]

Figure 16:  Log representation of Figure 15
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Figure 17:  ω/νm for example of Figure 15

Ratio: [B(ε,E(t)/N) @ ω  = 0] / B(ε,t)

Figure 18:  Ratio of B(ε,t) with ω set to zero, to actual B(ε,t)
for example of Figure 15

[ratio = 1 at rectangular base, ridges along high ω/νm]

The microstructure developing along the node lines in the 500
kHz example is a mathematical artifact due to the comparable
magnitudes of ω and νm at those locations.
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Conclusions

The function B(ε,t) shown as equation (4) is presented as the
logarithmic slope in energy of the electron distribution function in
the case of a slightly ionized uniform gas with both inelastic collisions
and time varying electric field. This function was derived from the
Boltzmann equation through a sequence of approximations, and its
validity relies on the condition |ω/νm| < 1.

In this analysis the frequency function ω(t), defined in
equation (6) on the basis of the electric field as shown in equation
(11), encapsulates the purely temporal effects of E(t) on the electron
distribution. In addition the instantaneous magnitude of E/N also has
an impact on the electron distribution. Figure 18 clearly shows how a
time dependent solution can be quite different from a sequence of
static solutions each at the instantaneous E(t)/N.

The model B(ε,t) has physically reasonable limiting behavior,
and the case of massless electrons in a static field was favorably
compared to published calculations and data for a variety of gases in
a previous work.7 Any approximate analysis such as this one strives
to find an appropriate balance between a convenient and widely
applicable result on the one hand, and accuracy on the other.
Quantifying the degree to which this model approaches that balance
is left to future work.
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